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Abstract: In this paper, a non-integer variable-order epidemiological model is presented to study the human-to-human transmission of

Middle East respiratory syndrome coronavirus (MERS-CoV) pandemic in two areas. In the presented SISI model, the human population

is divided into two compartments; susceptible and infectious compartments. The impact of the memory which changes with time in the

sense of Caputo’s derivative of fractional variable-order is studied through the numerical solutions of the proposed model. The numerical

solutions are obtained via predictor corrector method. Moreover, the equilibrium points and stability of the model are illustrated.
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1 Introduction

Infectious diseases have become one of the most serious global threats to human societies [1]. The prevalence of epidemics
and pandemics shaped dramatically the human history. Through history, global pandemics including the Black Death,
Cholera and the Spanish flu of 1918 affected human civilizations and killed millions of people [2]. Recently, Pandemics
like SARS, bird flu (H5N1), swine flu (H1N1), Ebola, Zika and Covid-19 caused millions of deaths during the last few
decades [3]. Moreover, endemic diseases like HIV, AIDS, TB and malaria are potentially deadly diseases that currently
kill millions of people each year in several countries [4,5,6]. One of such infectious diseases is the Middle East respiratory
syndrome coronavirus (MERS-CoV). It is a viral respiratory infectious disease which struck human societies [7]. In 2012,
the first cases were discovered in the Middle East (in Saudi Arabia) and then it spread dramatically to other countries
[8]. The virus mostly spread directly from human to human through close contact. It causes severe illness with a high
threat of mortality. The economic impact of MERS-CoV outbreak was devastating through several sectors like tourism,
international trade, international supply chains, agricultural, and services sectors [9].
Mathematical models of infectious diseases are very essential to give a detailed description of the prevalence of infectious
diseases within a population [10,11]. Furthermore, such models are significant tools to figure out the crucial aspects of
epidemics and to understand the dynamics of emerging infectious diseases. On the other hand, decision makers can use
mathematical models to gather information about the behaviour of epidemics and pandemics in order to apply strategic
plans to face the infectious diseases threat and to control infectious diseases. Fractional order models are valuable tools to
describe epidemiological dynamical systems [12-20].
Such models represent better fitting to the observed real data compared with the classical integer order models. Fractional
order models take into consideration, the phenomenon of memory which exists in biological and epidemiological systems
[21-28]. The constant fractional order can be considered as the index of the memory [29-34]. The fractional variable-order
derivatives which are described as an extension of the constant fractional-order derivatives that can be used to characterize
the memory that changes with time [35].
As shown in the literature, the numerical results of the fractional order models are more precise in several applications [36-
38]. Motivated by this, in this study we present a fractional variable-order SISI model to describe the dynamics of MERS-
CoV pandemic. The main contribution of this paper is to study the impact of the time-varying fractional derivative on
the numerical results. Hence, we introduce several fractional variable-order derivatives to the proposed model in order to
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show that, when the fractional derivatives vary with time, the behavior of the numerical solutions of the model dramatically
changes.
The rest of the paper is organized as follows. Some basic definitions about the fractional variable-order derivatives are
presented in section 2 while in section 3, the proposed fractional variable-order model of MERS-COV is introduced.
Equilibrium points and stability are discussed in section 4. The Numerical results of the proposed model are presented
and discussed in Section 5. The conclusion of the paper is given in section 6 to summarize and highlight the main points
of our work.

2 Fractional calculus

In this section, some basic definitions of the fractional variable-order derivatives which are considered as a generalization
of the constant fractional-order derivatives [38] are presented. The non-integer variable-order derivative can depict the
variable memory of the fractional order models (FOM). Caputo derivative is commonly used in mathematical models
because the initial conditions of the FOM are the same as the initial conditions of the classical integer-order models
[38-40]. There exists different approaches to define the fractional variable-order derivatives. In the following definitions,
the fractional variable-order 0 < α(t)≤ 1 is a continuous bounded function [40].

2.1

GL
0 D

α(t)
t g(t) = lim

h→0
h−α

[n]

∑
i=0

(−1)i

(

α

i

)

g(t − ih)

2.2 Caputo derivatives:

2.2.1 Left Caputo derivative

C
a D

α(t)
t g(t) =

1

Γ(1−α(t))

∫ t

a
(t − s)−α(t)g′(s)ds (1)

2.2.2 Right Caputo derivative:

C
t D

α(t)
b g(t) =

−1

Γ(1−α(t))

∫ b

t
(s− t)−α(t)g′(s)ds (2)

2.3 R-L derivative:

2.3.1 Left R-L derivative:

RL
a D

α(t)
t g(t) =

1

Γ(1−α(t))

d

dt

∫ t

a
(t − s)−α(t)g(s)ds (3)

2.3.2 Right R-L derivative:

RL
b D

α(t)
t g(t) =

−1

Γ(1−α(t))

d

dt

∫ b

t
(s− t)−α(t)g(s)ds (4)

Caputo fractional variable-order derivative is used here in this paper as it can employ the same traditional initial conditions
of the integer order derivative which are physically comprehensible.
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3 Model derivation

In this section, a fractional variable-order model of MERS-COV will be implemented based on the model presented in
[41,42]. The population is divided into two areas x and y in the presented model. There are two sub-populations in each
area according to their disease status; the infected population (Ix and Iy) and the population who are susceptible to infection
(Sx and Sy).
The Fractional variable-order model of MERS-CoV is as follows:

Dα(t)Ix(t) =
β SxIx

Sx + Ix

− (c+ d+ µ1)Ix + µ2Iy +
ωµ2SyIy

Sy + Iy

,

Dα(t)Iy(t) =
β SyIy

Sy + Iy

− (c+ d+ µ2)Iy + µ1Ix +
ωµ1SxIx

Sx + Ix

,

Dα(t)Sx(t) = a1 −
β SxIx

Sx + Ix

− (b+ a1)Sx + µ2Sy + dIx−
ωµ2SyIy

Sy + Iy

,

Dα(t)Sy(t) = a2 −
β SyIy

Sy + Iy

− (b+ a2)Sy + µ1Sx + dIy −
ωµ1SxIx

Sx + Ix

(5)

With the same initial conditions Ix(0) = 100, Iy(0) = 0,Sx(0) = 500,Sy(0) = 500.

Where the variable order α(t) is a function of time and the parameters are described as follows:
β is the transmission rate within an area
ω is the transmission rate in different area
b is the rate of natural death of the susceptible individuals
c is the rate of MERS-CoV death of human population
d is the rate of recovery from MERS-CoV
a1 is the number of persons added to Sx

a2 is the number of persons added to Sy

µ1 is the rate of movement from region x to region y

µ2 is the rate of movement from region y to region x

The Parameters of the presented system have been taken from [41,42] as follows:

a1 = 4326,a2 = 13461,b = 0.01,c = 0.05,d = 0.1,β = 0.1,ω = 1,µ2 = 0.

The value of the parameter µ1 varies. The given system will be solved in two cases. In the 1st case, µ1 = 0.1 while in
the 2nd case µ1 = 0.01. The same initial conditions which have been taken from [41.42] will be used in the two cases as
follows:

Ix(0) = 100, Iy(0) = 0,Sx(0) = 500,Sy(0) = 500.

4 Equilibrium points and stability

The proposed model (5) can be written as follows:

Dα(t)Ix(t) = f1(Ix, Iy,Sx,Sy),

Dα(t)Iy(t) = f2(Ix, Iy,Sx,Sy),

Dα(t)Sx(t) = f3(Ix, Iy,Sx,Sy),

Dα(t)Sy(t) = f4(Ix, Iy,Sx,Sy)

(6)

Where Ix(0) = Ix0, Iy(0) = Iy0,Sx(0) = Sx0, and Sy(0) = Sy0
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To get the equilibrium points of the fractional variable-order system (5),

let Dα(t)(Ix) = Dα(t)(Iy) = Dα(t)(Sx) = Dα(t)(Sy) = 0

⇒ fi

(

Ixeq , Iyeq ,Sxeq ,Syeq

)

= 0, i = 1,2,3,4.

The presented model (5) has two equilibrium points, the free equilibrium point E0 and the endemic equilibrium point E1.
The free equilibrium point E0 outlines the circumstances where Ix and Iy do not exist. On the other hand, the endemic
equilibrium point E1 portrays the situation where all the population groups Sx,Sy, Ix and Iy exist.

The disease free equilibrium point E0 =
(

0,0, a2µ2+a1(b+µ2)
b(µ1+µ2+b) , a1µ1+a2(b+µ1)

b(µ1+µ2+b)

)

and the endemic equilibrium point E1 =

(I∗x , I
∗
y ,S

∗
x ,S

∗
y). The local stability of

(

Ixeq , Iyeq ,Sxeq ,Syeq

)

is satisfied under condition that, the Jacobian’s eigenvalues J

satisfy the following condition [9]:

|arg(σi)|>
α(t)π

2

Where

J =













∂ f1
∂ Ix

∂ f1
∂ Iy

∂ f1
∂Sx

∂ f1
∂Sy

∂ f2
∂ Ix

∂ f2
∂ Iy

∂ f2
∂Sx

∂ f2
∂Sy

∂ f3
∂ Ix

∂ f3
∂ Iy

∂ f3
∂Sx

∂ f3
∂Sy

∂ f4
∂ Ix

∂ f4
∂ Iy

∂ f4
∂Sx

∂ f4
∂Sy













For the free equilibrium point, the eigenvalues are

σ1 =−b < 0,

σ2 =−(b+ µ1+ µ2),

σ3 = (2β − 2c− 2d− µ1 − µ2 +
√

ξ )/2,

σ4 = (2β − 2c− 2d− µ1 − µ2 −
√

ξ )/2,

ξ = µ2
1 + 2(1+ 4ω+ 2ω2)µ1µ2 + µ2

1 > 0.

The free equilibrium point E0 is locally asymptotically stable if σ3,4 < 0, but for the sufficient condition of the endemic
equilibrium point E1 to be locally asymptotically stable is:

|arg(σ1)|>
α(t)π

2
, |arg(σ2)|>

α(t)π

2
, |arg(σ3)|>

α(t)π

2
, |arg(σ4)|>

α(t)π

2

The negative eigenvalues which appear in several applications like epidemiology, hydrostatic fluid and buckling analyses
applications mean that, the solutions of the dynamical system decay with time [44]. Such eigenvalues can be used to
predict if the pandemic eventually dies out or not as the largest eigenvalue represents the basic reproduction number R0 in
order to control the spread of infectious diseases [45]. For model (5), R0 is given as:

R0 =
β (µ1 + µ2 + 2c+ 2d)+ 2µ1µ2ω +

√
η

2(µ1 + µ2)(c+ d)+ (c+ d)2
(7)

Where

η = β 2(µ1 + µ2)
2 + 4µ1µ2ω((c+ d+ µ2)(c+ d+ µ1)ω + 2β (

1

2
µ1 +

1

2
µ2 + c+ d))

Theorem 1 [43]

E0 is locally asymptomatically stable if R0 < 1, where as E0 is unstable if R0 > 1.

Theorem 2 [43]

The disease-free equilibrium E0 is globally asymptotically stable if R0 < 1.

If R0 < 1,then the outbreak is expected to end but if R0 > 1, then the outbreak is expected to persist. This explains the
connection between the existence or stability of the endemic point E1 and the value of R0.
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5 Numerical results

We use the predictor-corrector scheme to find the numerical solutions of the presented model (5). However, the predictor-
corrector technique uses the average of the slopes of the tangent to the solution curve over an interval rather than a single
point in order to decrease the error [46-48].
Consequently, for system (6), suppose a uniform grid {t j = jh : j = 0,1, ...,n}, where n is an integer such that
n = T/h,0 < α(t)≤ 1,0 ≤ t ≤ T , and T ∈ R

+.
The predictor approximations are presented as follows:

(Ix)
p
n+1 = Ix(0)+

1

Γ(α(tn+1))

n

∑
j=0

B j,n+1 f1 (t j,(Ix) j,(Iy) j,(Sx) j,(Sy) j) ,

(Iy)
p
n+1 = Iy(0)+

1

Γ(α(tn+1))

n

∑
j=0

B j,n+1 f2 (t j,(Ix) j,(Iy) j,(Sx) j,(Sy) j) ,

(Sx)
p
n+1 = Sx(0)+

1

Γ(α(tn+1))

n

∑
j=0

B j,n+1 f3 (t j,(Ix) j,(Iy) j ,(Sx) j,(Sy) j) ,

(Sy)
p
n+1 = Sy(0)+

1

Γ(α(tn+1))

n

∑
j=0

B j,n+1 f4 (t j,(Ix) j ,(Iy) j,(Sx) j,(Sy) j) ,

(8)

Where

B j,n+1 =
hα(tn+1)

α(tn+1)
[(n− j+ 1)α(tn+1) − (n− j)α(tn+1)],0 ≤ j ≤ n.

The corrector approximation (Ix)n+1,(Iy)n+1,(Sx)n+1 and (Sy)n+1 are given by as follows:

(Ix)n+1 = Ix(0)+
hα(tn+1)

Γ(α(tn+1)+ 2)
f1(tn+1,(Ix)

p
n+1,(Iy)

p
n+1,(Sx)

p
n+1,(Sy)

p
n+1)

+
hα(tn+1)

Γ(α(tn+1)+ 2)

n

∑
j=0

A j,n+1 f1(t j,(Ix) j,(Iy) j,(Sx) j,(Sy) j).

(Iy)n+1 = Iy(0)+
hα(tn+1)

Γ(α(tn+1)+ 2)
f2(tn+1,(Ix)

p
n+1,(Iy)

p
n+1,(Sx)

p
n+1,(Sy)

p
n+1)

+
hα(tn+1)

Γ(α(tn+1)+ 2)

n

∑
j=0

A j,n+1 f2(t j,(Ix) j,(Iy) j,(Sx) j,(Sy) j).

(Sx)n+1 = Sx(0)+
hα(tn+1)

Γ(α(tn+1)+ 2)
f3(tn+1,(Ix)

p
n+1,(Iy)

p
n+1,(Sx)

p
n+1,(Sy)

p
n+1)

+
hα(tn+1)

Γ(α(tn+1)+ 2)

n

∑
j=0

A j,n+1 f3(t j,(Ix) j,(Iy) j,(Sx) j,(Sy) j).

(Sy)n+1 = Sy(0)+
hα(tn+1)

Γ (α(tn+1)+ 2)
f4(tn+1,(Ix)

p
n+1,(Iy)

p
n+1,(Sx)

p
n+1,(Sy)

p
n+1)

+
hα(tn+1)

Γ(α(tn+1)+ 2)

n

∑
j=0

A j,n+1 f4(t j,(Ix) j,(Iy) j,(Sx) j,(Sy) j).

(9)

Where

A j,n+1 =











nα(tn+1)+1 − [n−α(tn+1)](n+ 1)α(tn+1) j = 0

(n− j+ 2)α(tn+1)+1 − 2(n− j+ 2)α(tn+1)+1 +(n− j)α(tn+1)+1 1 ≤ j ≤ n

1 j = n+ 1

(10)

The presented model has been solved by predictor-corrector method for different values of α(t). The predictor-corrector
numerical results have been compared with the numerical results of the classical fourth order Runge-Kutta method (RK4)
at α(t) = 1 in order to check the accuracy of the predictor-corrector method. As shown in figure 1, the results of the two
methods are very close to each other.
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Fig. 1: The infected population Ix at α(t) = 1 using the predictor-corrector method (the red line)and the RK4 method (the blue line)

.

When µ1 = 0.1, the basic reproduction number R0 < 1 and the disease free equilibrium point E0 is asymptotic stable (see
figures. 2-7), while R0 > 1 and the endemic equilibrium point E1 is asymptotic stable when µ1 = 0.01 (see figures. 8-13).
The fractional-order derivative considers the memory effects of the system, while the variable fractional-order shows that
the memory effect of proposed model dramatically changes with time. The behavior of the system is investigated for
different values of α(t). When α(t) = 1−0,01t and α(t) = 0.75−0.01/10t which are decreasing functions at which the
memory is decreasing. Hence, the behaviour of the numerical solution is slower with time as shown in figures (2, 4, 5,
7, 8, 10, 11, 13). On the other hand, when α(t) is considered as a periodic, then the memory is periodic. In addition, the
behavior of the numerical solution is periodic. as in the presented figures (3, 6, 9, 12) where α(t) = 0.7− 0.01sin(πt).

Fig. 2: The infected population Ix when µ1 = 0.1: blue line (α(t) = 1), red line (α(t) = 1−0.01t).

c© 2023 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 9, No. 2, 331-344 (2023) / www.naturalspublishing.com/Journals.asp 337

Fig. 3: The infected population Ix when µ1 = 0.1: blue line (α(t) = 0.7), red line (α(t) = 0.7−0.01sin(πt)).

Fig. 4: The infected population Ix when µ1 = 0.1: blue line (α(t) = 0.8), red line (α(t) = 0.75− 0.01
100 t).
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Fig. 5: The infected population Iy when µ1 = 0.1: blue line (α(t) = 1), red line (α(t) = 1−0.01t).

Fig. 6: The infected population Iy when µ1 = 0.1: blue line (α(t) = 0.7), red line (α(t) = 0.7−0.01sin(πt)).
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Fig. 7: The infected population Ix when µ1 = 0.1: blue line (α(t) = 0.8), red line (α(t) = 0.75− 0.01
100 t).

Fig. 8: The infected population Ix when µ1 = 0.01: blue line (α(t) = 1), red line (α(t) = 1−0.01t).
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Fig. 9: The infected population Ix when µ1 = 0.01: blue line (α(t) = 0.7), red line (α(t) = 0.7−0.01sin(πt)).

Fig. 10: The infected population Ix when µ1 = 0.01: blue line (α(t) = 0.8), red line (α(t) = 0.75− 0.01
100 t).
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Fig. 11: The infected population Iy when µ1 = 0.01: blue line (α(t) = 1), red line (α(t) = 1−0.01t).

Fig. 12: The infected population Iy when µ1 = 0.01: blue line (α(t) = 0.7), red line (α(t) = 0.7−0.01sin(πt))
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Fig. 13: The infected population Iy when µ1 = 0.01: blue line (α(t) = 0.9), red line (α(t) = 0.75− 0.01
100 t)

6 Conclusion

We argue that, using the proposed fractional variable-order models offers a well understanding of the dynamics of the
of MERs-CoV pandemic. The impact of introducing time-varying fractional derivatives on the numerical solutions has
been discussed. This study indicates that, the non-integer variable-order models have the advantage of distinguishing the
long memory that changes with time. So, the fractional variable-order derivative can be employed to depict the variable
memory of systems. The predictor-corrector approach is used to solve the proposed MERs-CoV model. Furthermore, the
stability analysis of the system has been illustrated.
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